Properties of Multiple Proton Beams in the Solar Wind

B. E. Goldstein/JPL, M. Neugebauer/JPL, L. D. Zhang/User Technical Associates, Inc., S. P. Gary/LANL, D. Reisenfeld/LANL, J. T. Steinberg/LANL

Observations and Method

- SWOOPS/Ulysses plasma data is used within 3.0 AU of the Sun; this is the outbound in-ecliptic in 1990-91, and the fast latitude scan during 1994-95
- Observations of 2 proton beams can only be obtained with good resolution when the magnetic field is approximately radial; 1D velocity space distributions are obtained.
- Data are fit to a 2 beam model with the slower beam described by a Kappa function and the faster beam by a Maxwell-Boltzmann distribution.
- For the period of the fast latitude scan, the data has been characterized by whether or not the magnetic field is in the direction of the dominant polarity

Ratio of faster beam density to slower beam density

Summary

- Almost all high speed solar wind is well fit by a two beam model. For the slow solar wind, 229 of 351 cases were well fit.
- The fraction of energy carried by beam drift does not depend noticeably on whether the wind is fast or slow
- The faster beam has more thermal energy than the slower beam in the high speed wind.
- The faster beam and slower beam have approximately equal thermal energies in the slow solar wind.
- For the density ratio of fast beam to slow beam, the averages:medians of the slow wind are 0.74:0.37 and of the fast wind are 0.63:0.51.